TEE and its Key Management
2023/01/13
Institute for Advanced Study, Tsinghua University

https://rujia.uk/

Abstraction

—
—

WL\ . ciphertext g /ﬁ\

The attacking surface is large

Needs on the Hardware Protection

& CipherteXt g
)/1L \ e J fﬁ\ I

Em ¥

Trusted Execution Environment

APP

¥ e

Hardware support for

Isolated execution: Isolated Execution
Environment

Ability to convince remote verifiers:
(Remote) Attestation

Protected storage: Sealing

TEE Solutions

X86 architecture:
e Intel SGX
« AMD SEV

Arm architecture:
 OP-TEE

e 1Trustee

RISC-V architecture:
* Keystone OP-TEE

.org

AMDZV

SEV

g’é TRUSTONIC
HUAWEI

e Sanctum

© Keystone «»sanctum

Isolated Execution

How Does a Program Run

1. Running program gets its own
area in RAM to hold code and data.
Copy instructions to there.

RAM

instructionl
instruction?
instruction3

CPU -

2. Start CPU running
those instructions
I

data

Storage
instrilt
instrubtion?
instruction3
instructiond

Firefox.exe

CPU runs a fetch/execute cycle
* fetch one instruction in sequence

* execute (run) that instruction,

e.g. do the addition

* fetch the next instruction, and so
on

aN|

https://web.stanford.edu/class/cs101/software-1.html

How Does a Program Run

Trusted Execution Environment

Trusted Execution Environment

Extension

10

Intel SGX Architecture

Memory

Memory Encryption Engine

Memory Management
Unit

Snooping

Address Space

Enclave A .: ||

Access from

OS/VMM

Access b/w

enclave S

Enclave B

11

Memory Encryption Engine

SGX cryptographic protection of memory is supported by the Memory Encryption Engine

Hardware unit - extension of the Memory Controller

* Objectives: e

Cache

— Data Confidentiality: Collections of memory
images of DATA written to the DRAM (into

different addresses and points in time) cannot be

distinguished from random data.
* Keys are randomly generated at

— Integrity: DATA read back from DRAM to LLC 1s reset b-}’ a HW DRNG module.
* Accessible only to MEE hardware

the same DATA that was most recently written from

LLC to DRAM.

12

Isolated Execution

* SGX introduces notion of enclave
* Isolated memory region for code & data

* New CPU instructions to manipulate
enclaves
and new enclave execution mode

* Enclave memory encrypted and integrity-
protected by hardware
* Memory encryption engine (MEE)

* No plaintext secrets in main memory

Extension

13

Isolated Execution

Untrusted Code

...................................

Trusted Code
’ : Call
: ate
0 g Trusted function ﬁ
E 9 e A N
Create enclave L Execute

e L E

Call trusted function :“'

Enclave

...................................

LE g OF I PE

Architectural Enclaves

* Enclave memory can be accessed
only by enclave code

* Protection from privileged

code (OS, hypervisor)

Application has ability to defend secrets

1.

Attack surface reduced to just
enclaves and CPU
Compromised software cannot
steal application secrets
Protects confidentiality and
integrity of code & data in
untrusted environments
Platform owner considered
malicious

Only CPU chip and isolated

region trusted

14

Intel SGX Instruction

Super.
EADD

EBLOCK
ECREATE
EDBGRD
EBDGWR

Description
Add a page
Block an EPC page

Create an enclave
Read data by debugger
Write data by debugger

Extension

User Description
EENTER Enter an enclave
EEXIT Exit an enclave

EGETKEY Create a cryptographic key
EREPORT Create a cryptographic report
ERESUME Re-enter an enclave

Encrypted
Memory |
-

15

Enclave Construction

1 { charinput_buf[BUFFER_SIZE];
2 { char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
copy_msg(in, input_buf);
if(verify_ MAC(input_buf))
{
decrypt_msg(input_buf);

3 < process_msg(input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);

} else
EEXIT(-1);
}

~

Enclave populated using special instruction (EADD)

* Contents initially in untrusted memory

* Copied into EPC in 4KB pages

DRAM

Both data & code copied before execution commences in enclave

EPC is limited
(only ~94MB

available)

Enclave Page
Cache (EPC)

16

Code and Workflow

SGX application: untrusted code

char request_buf[BUFFER_SIZE];

char response_buf[BUFFER_SIZE]; Enclave: trusted code
int main() char input_buf[BUFFER_SIZE];
{ char output_buf[BUFFER_SIZE];
while (1) int process_request(char *in, char *out)
receive(request_buf); copy_msg(in, input_buf);
ret = EENTER (request_buf, response_buf); if (verify_MAC(input_buf))
if (ret < 0) {
fprintf(stderr, "Corrupted message\n"); decrypt_msg(input_buf);
else process_msg(input_buf, output_buf);
send(response_buf); encrypt_msg(output_buf);
} copy_msg(output_buf, out);
EEXIT(0);
} } else
EEXIT(-1);

}

Server:

* Receives encrypted requests
* Processes them in enclave
* Sends encrypted responses

17

CPU-level Access Control

enclave mode?

\ 4

semantic check? [—— Plaintext

A 4

Address check?

/

int process_request(char *in, char *out)
{
copy_msg(in, input_buf);
if (verify_ MAC(input_buf))
{
decrypt_msg(input_buf);
process_msg(input_buf, output_buf);
EEXIT(0);
} else
EEXIT(-1);
}

18

Isolated Execution Summary

User process

- Trusted execution environment (TEE)
code In process
* Own code & data
- * Controlled entry points (Access
data control)
* Provides confidentiality & integrity
* Supports multiple threads

* Full access to application memory

19

Attestation

Remote Attestation

runs on a real hardware

in an up-to-date TEE ?

Is code really running inside an SGX enclave?

21

Local Attestation

Local attestation
Prove enclave’s identity (= measurement)
to another enclave on same CPU

Attestation 1s a mechanism to verify
that the application runs on a real
hardware in an up-to-date TEE with
the expected initial state.

APP

L

22

TEE Measurement

* Enclave contents distributed in plaintext

* Must not contain any (plaintext) confidential data
* Secrets provisioned after enclave constructed and integrity verified

* Problem: what if someone tampers with enclave?

* Contents initially in untrusted memory

int process_request(char *in, char *out) int process_request(char *in, char *out)
{ {
copy_msg(in, input_buf);
if(verify_MAC(input_buf))
{ {
decrypt_msg(input_buf); decrypt_msg(input_buf);

process_msg (input_buf, output_buf); [l: process_msg(input_buf, output_buf);

copy_msg(in, input_buf);
if (verify_MAC(input_buf))

encrypt_msg(output_buf); copy_msg (output_buf, external_buf);
copy_msg(output_buf, out); encrypt_msg(output_buf);

EEXIT(0); copy_msg (output_buf, out);
} else EEXIT(0);
EEXIT(-1); } else
} EEXIT(-1);

}

23

TEE Measurement

e CPU calculates enclave measurement hash

DRAM CPU . :
\ durmg enclave construction

* Each new page extends hash with page
content and attributes
(read/write/execute)

* Hash computed with SHA-256

* Measurement can be used
to attest enclave to local or
remote entity

- /

CPU calculates enclave measurement hash during enclave construction
Different measurement if enclave modified

24

Local Attestation

* Prove identity of A to local enclave B

Enclave A Enclave B
1. Hi! I'm 5f904ba8910bff! Who are you? (

{)
J
7}

4. Here 1s my report \

A 4

/ Measurement (enclave A) x
3. Here you go! _ 6. Here you gO!

5. Please give me my report

2. Please create a report for Measurement (enclave B)

5f904ba8910bff _ verification key

Target enclave B measurement required for key generation

. Report contains information about target enclave B, including its measurement

3. CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target enclave
B measurement

4. Report sent back to target enclave B

5. Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key
(available only on same CPU)

6. Check MAC received with report and do not trust A upon mismatch

A 4

N —

Remote Attestation Overview

O Intel attestation service

Ensure the
authenticity of
the device

Verify the authenticity of

the enclave

Intel CPU

Intel CPU

Host Host

26

Report and Quote

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
copy_msg(in, input_buf);
if (verify_MAC(input_buf))
{
decrypt_msg(input_buf);
process_msg (input_buf, output_buf);
encrypt_msg(output_buf);
copy_msg(output_buf, out);
EEXIT(0);
} else
EEXIT(-1);
}

Measurement

REPORTDATA
(output)

Signature

Measurement

REPORTDAT
A

(output)

27

PE and QFE

* Transform local report to remotely
verifiable “quote”

* Based on provisioning enclave (PE) and

quoting enclave (QE)

* Architectural enclaves provided by
Intel

* Execute locaﬂy on user platform

* Each SGX-enabled CPU has unique key

fused during manufacturing

* Intel maintains database of keys

Intel
Key Generation
Facility
CPU e-fuses
Provisioned
Seal Provisioning Keys
Secret Secret
rs
(T N
Provisioning
Enclave
| Il Provisioning | | Provisioning || ngi‘ ‘r’firff Koy
Seal Key Key o:.vnarsrﬁp Y Intel
v Provisioning
Authenticated |_ | Attestation ||, anedation Key — Service
Encryption Key
v
Encrypted
Attestation Key
1
Attested Enclave
Key Agreement Key Agreement]
Message 2 1 Message 1 F— (Jhallenge
+ EREPORT [« Report Data j
»|__Report Remote
Party in
Quoting Enclave Soﬂ\::alre
Bl Reporting Report Attestation
Key Verification
A
LJl| Provisioning Attestation | Response —»|
Seal Key Signature P
v I
.| Authenticated .| Aftestation
Encryption Key

28

Root Provisioning Key (ntel) [=

Facility
CPU e-fuses .
Provisioned
Seal Provisioning Keys
Secret Secret
¥
.-

* The first fused key created by Intel at Provisoring
manufacturing time, iS the ROOt Provisioning | | Provisioning Proot of
~ Provisioning Key —=

. e . Seal Ke Ke .
Provisioning Key (RPK) — : ounerstp o isioing

Authenticated | _ | Attestation ||, _ Aestation Key Service
Encryption Key

¥

* Intel is also responsible for maintaining a Attostation Key

database of all keys ever produced T

Attested Enclave

Key Agreement Key Agreement]
Message 2 1 Message 1 +— Challenge
+ EREPORT [« Report Data
> Report Remote
Party in
Quoting Enclave Soﬂ\:ralre
Reporting Report Attestation
ol |- .)
Key Verification
A
LJl| Provisioning Attestation || R]
Seal Key Signature esponse
v £
.| Authenticated .| Aftestation
Encryption Key

Remote Attestation =

Facility
CPU e-fuses Provisioned
Seal Provisioning Keys
Secret Secret
¥
. . . . -
 PE communicates with Intel attestation service Provisioning
Enclave
* Proves it has key installed by Intel Provionng || Proveoning| |, Prootel
. . . i Seal Key KE‘; = I'O\."ISIDI"IIHQ ey —= Intel
* Receives asymmetric attestation key S e |Prouisioning
AET::;E;:;?:I Anes‘t;ticn «— Attestation Key | Service
. + y o
* QFE performs local attestation for enclave pencrypted <|nte|
. . . . |
* QE verifies report and signs it using R
. k Attested Enclave
attestation ey Key Agreement || Key Agreement || Challenge —
. . Message 2 Message 1
* Creates quote that can be verified outside . I
platform »| EREPORT [+— Report Data
*_Report Remote
. Party in
. . E |
* Quote and signature sent to remote attester, which Quoting Enclave Softwars
. . . . Ll Reporting . Report
communicates with Intel attestation service to Key Verification
. - ;
verify quote valhdity Ly Provisining Attestation | pesponse -+
v I
.| Authenticated Attestation
Encryption | Key

Arm Trust Zone

* TrustZone is a set of hardware
security extensions in Arm
processors.

* Introduced in application
processors (Cortex-A) in 2004

* Introduced in microcontrollers

(Cortex-M) 1n 2016

* Focusing on the extensions in
Cortex-A, due to its:

* widely deployment,
e available documents,

* growing interest from
academia.

CORE

TZASC

[e |

Wormal world

Wormal world
user mode

'y
L 4

Mormal world
privilege mode

A

Secure world

Secure world
user mode

A
Y

Secure world
privilege mode

P

Monitor mode (J

TZMA

-

RO

AXl bus

AX|-to-APB bus

{

(N

TZPC <>

Peripherals

31

Privacy Concerns on Attestation

Attestation using standard asymmetric signing schemes has drawn some privacy

concerns

u ®
e, — (intel
7

[know you, and now I can identify/trace you !

32

Intel Enhanced Privacy ID (EPID)

Attestation using standard asymmetric signing schemes has drawn some privacy concerns

* EPID is a type of group signature scheme
that allows a platform to sign objects
without uniquely identifying the platform

B
or linking different signatures. I n tE|

* Each EPID signer belongs to a “group”,
and verifiers use the group’s public key to / \

verify signatures.

I7- ‘ (14 ‘
* A typical size for a fully populated group 1s ‘ 59

7
a million to a few million platforms.

Quote 1 Quote 2

33

EPID scheme Join protocol

* EPID is a type of group signature scheme
that allows a platform to sign objects
without uniquely identifying the platform
or linking different signatures.

* A typical size for a fully populated group

1s a million to a few million platforms.

Setup(1¥): on input a security parameter 1%, this algorithm returns the
public parameters pp of the system.

GKeygen(pp): on input the public parameters pp, this algorithm generates
the issuer’s key pair (isk,ipk). We assume that ipk contains pp and so we
remove pp from the inputs of all following algorithms.

Join: this is an interactive protocol between a platform P, taking as inputs
ipk, and the issuer Z owning isk. At the end of the protocol, the platform
returns either L or a signing key sk whereas the issuer does not return
anything.

KeyRevoke({sk;}I"): this algorithm takes as input a set of m platform secret
keys sk; and returns a corresponding key revocation list KRL containing m
elements that will be denoted as KRL[é], for i € [1, m].

SigRevoke({ (i)} ,): this algorithm takes as input a set of n EPID sig-
natures {(u;)}", and returns a corresponding signature revocation list SRL
containing n elements that will be denoted as SRL[:], for ¢ € [1,n].
Sign(ipk, sk, m, SRL): this algorithm takes as input the issuer’s public key ipk,
a platform secret key sk a message m and a signature revocation list SRL and
returns an EPID signature .

Sanders, Olivier, and Jacques Traoré. "EPID with Malicious Revocation." In Cryptographers’ Track at
the RSA Conference, pp. 177-200. Springer, Cham, 2021.

34

The verifier starts executing the key exchange
protocol and sends the first message g A to the
software inside the secure container.

The software inside the container produces the
second key exchange message, ¢g'B, and asks the
trusted hardware to attest the cryptographic

hash of both key exchange messages,
h(g"Allg"B).

The verifier receives the second key exchange
and attestation signature, and authenticates the
software inside the secure container by checking
all the signatures

Use Case 1: Authenticated Key Agreement

Manufacturer
Certificate Authority
PubRK H—| PrivRK Manufacturer Root Key !
_______ *_________________!____________________________________l
| Signs
j==== k
[
[Endorsement Tamper-Resistant
: Certificate Hardware
v T Yl /o)
| | Attestation Key PubAK PrivAK | Signs —»| Attestation
P e) |] Signature
[
[
| [«--- Hash of --{4 Measurement
[| Secure |
""" 1 Hash of
Tusts | | B $--- Y __

: || Key Exchange Key Exchange f

| Message 1 Message 2 |

I k- - - : :

|

|

1 A4 Y A

Verifier

35

Sealing

Encrypted Storage

37

MRENCLAVE

Memory

(intel“”

Enclave A ’i Storage

MRENCLAVE: Its

measurement 1s the strictest

Enclave B

way to identify an enclave.

MRSIGNER

Memory

(ntel.

Enclave A

Enclave B

MRSIGNER : The certificate 1s
signed by the “independent software
vendor” (ISV)

Allows data migration from old
security versions to new ones

39

Root Provisioning Key

Facility
CPU e-fuses
eriuses Provisioned
Seal Provisioning Keys
Secret Secret
¥
.-
* each platform should assume that its RSK Provisioning
value 1s both unique and known only to | J| Provisioning | | Provisioning || _Proofef
itself Seaey || ey | Possnnaker) g
1tselr. ¥ P Provisioning
Authenticated | _ | Attestation ||, Apactation Key Service
Encryption Key
Y
Encrypted
Attestation Key
1
Attested Enclave
Key Agreement Key Agreement]
Message 2 1 Message 1 F— Challenge
+ EREPORT [« Report Data
*_ Report Remote
Party i
Quoting Enclave Soaﬂjalrne
; Attestation
)| Reporting | | Report :
Key Verification
A
Ll Provisioning Attestation
Seal Key Signature [T Response —
v I
L Authenticated .| Aftestation
Encryption Key

MRENCLAVE and MRSIGNER

System parameters

Enclave request parameters

Owner Epoch

Current CPU

SVN

Invoking ISV

SVN

MRENCLAVE\

MRSIGNER

L Root Sealing]

Key J
\.

EGETKEY
®
[Key Name
e >? @ CPU SVN
® >? @ ISV SVN
® optional ® Key Policy
AES-CMAC
deriviation
Sealing key/
Repor key

Simplified EGETKEY derivation process

Intel
Key Generation
Facility
CPU e-fuses
Seal Provisioning
Secret Secret
¥
.-
Provisioning
Enclave
|}l Provisioning | | Provisioning || Proof OfK N
Seal Key Key m:ﬁ:f;:;ﬁp ey
v
Authenticated | _ | Attestation ||, anectation Key —
Encryption Key
v
Encrypted
Attestation Key
1
Attested Enclave
Key Agreement Key Agreement]
Message 2 1 Message 1 F— Challenge
+ EREPORT [« Report Data
» Report
Quoting Enclave
L Reporting . ngon
Key Verification
A
Ll Prc:-visianing Attestation U Response —+|
Seal Key Signature P
v I
.| Authenticated .| Aftestation
Encryption Key

Provisioned
Keys

Intel
Provisioning
Service

Remote

Party in

Software
Attestation

41

Summary

What an Enclave Can Do?

Computations

Access its own [encrypted] memory
Access app memory

Communicate with user, but insecurely

Communicate with another party, which can be
secure 1f the enclave shares a key with the other

party
Attest 1ts 1dentity (a hash of its binary and initial
data) to another party

“Seal” data, 1.e. encrypt data with a key that only it
can access, for persistent storage — Can use
Platform Service Enclave (PSE) for trusted time
and monotonic counter

Teardown

App

Memory

Enclave

43

SGX Limitations & Research Challenges

Amount of memory enclave can use needs to be known in advance

* Dynamic memory support in SGX v2

Security guarantees not perfect

* Vulnerabilities within enclave can still be exploited Attack
* Side-channel attacks possible surface "y
Untrusted Sensitive
ruste <> code
. Porf b component and data
erformance overhea Performance
* Enclave entry/exit costly overhead

* Paging very expensive

TCB size

Application partitioning? Legacy code? ...

44

Reference

Intro to Intel SGX , Mark D. Ryan

Attacks and Defenses for Intel SGX, Taesoo Kim

Intel SGX Explained, Victor Costan and Srinivas Devadas

* Privacy-Preserving Analytics in and out of the Clouds, Jon Crowcroft

