
TEE and its Key Management

Rujia Li

2023/01/13

Institute for Advanced Study, Tsinghua University

https://rujia.uk/

2

CPU

OS

APP

Abstraction

ciphertext

The attacking surface is large

3

CPU

OS

APP

Needs on the Hardware Protection

ciphertext

app

4

Trusted Execution Environment

Hardware support for

- Isolated execution: Isolated Execution

Environment

- Ability to convince remote verifiers:

(Remote) Attestation

- Protected storage: SealingCPU

OS

APP

app

5

X86 architecture:

• Intel SGX

• AMD SEV

Arm architecture:

• OP-TEE

• iTrustee

RISC-V architecture:

• Keystone

• Sanctum

TEE Solutions

Isolated Execution

7

CPU runs a fetch/execute cycle

• fetch one instruction in sequence

• execute (run) that instruction,

e.g. do the addition

• fetch the next instruction, and so

on

https://web.stanford.edu/class/cs101/software-1.html

How Does a Program Run

8

MemoryCPU Storage

How Does a Program Run

9

Trusted Execution Environment

MemoryCPU Storage

Extension

Encrypted

Memory

Encrypted

Storage

10

Trusted Execution Environment

MemoryCPU Storage

Extension

Encrypted

Memory

Encrypted

Storage

11

Enclave A

MEE

Memory Encryption Engine

EPC

Encrypted

Code/data

Memory Management

Unit

MMU

Memory

CPU

Enclave B

Address Space

Snooping

Access b/w

enclaves

Access from

OS/VMM

Intel SGX Architecture

12

Memory Encryption Engine

SGX cryptographic protection of memory is supported by the Memory Encryption Engine

Hardware unit - extension of the Memory Controller

• Objectives:

– Data Confidentiality: Collections of memory

images of DATA written to the DRAM (into

different addresses and points in time) cannot be

distinguished from random data.

– Integrity: DATA read back from DRAM to LLC is

the same DATA that was most recently written from

LLC to DRAM.

• Keys are randomly generated at

reset by a HW DRNG module.

• Accessible only to MEE hardware

13

Isolated Execution

• SGX introduces notion of enclave

• Isolated memory region for code & data

• New CPU instructions to manipulate

enclaves

and new enclave execution mode

• Enclave memory encrypted and integrity-

protected by hardware

• Memory encryption engine (MEE)

• No plaintext secrets in main memory

CPU

Extension

14

Isolated Execution

• Enclave memory can be accessed

only by enclave code

• Protection from privileged

code (OS, hypervisor)

Application has ability to defend secrets

1. Attack surface reduced to just

enclaves and CPU

2. Compromised software cannot

steal application secrets

3. Protects confidentiality and

integrity of code & data in

untrusted environments

4. Platform owner considered

malicious

5. Only CPU chip and isolated

region trusted

15

Intel SGX Instruction

Super. Description User Description

EADD Add a page EENTER Enter an enclave

EBLOCK Block an EPC page EEXIT Exit an enclave

ECREATE Create an enclave EGETKEY Create a cryptographic key

EDBGRD Read data by debugger EREPORT Create a cryptographic report

EBDGWR Write data by debugger ERESUME Re-enter an enclave

Extension

Encrypted

Memory

Enclave

16

Enclave Construction

Enclave populated using special instruction (EADD)

• Contents initially in untrusted memory

• Copied into EPC in 4KB pages

Both data & code copied before execution commences in enclave

char input_buf[BUFFER_SIZE];

char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)

{

copy_msg(in, input_buf);

if(verify_MAC(input_buf))

{

decrypt_msg(input_buf);

process_msg(input_buf, output_buf);

encrypt_msg(output_buf);

copy_msg(output_buf, out);

EEXIT(0);

} else

EEXIT(-1);

}

EPC

DRAM

1

2

3

Enclave Page

Cache (EPC)

EPC is limited

(only ~94MB

available)

17

Code and Workflow

SGX application: untrusted code

char request_buf[BUFFER_SIZE];

char response_buf[BUFFER_SIZE];

int main()

{

...

while(1)

{

receive(request_buf);

ret = EENTER(request_buf, response_buf);

if (ret < 0)

fprintf(stderr, "Corrupted message\n");

else

send(response_buf);

}

...

}

Enclave: trusted code

char input_buf[BUFFER_SIZE];

char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)

{

copy_msg(in, input_buf);

if(verify_MAC(input_buf))

{

decrypt_msg(input_buf);

process_msg(input_buf, output_buf);

encrypt_msg(output_buf);

copy_msg(output_buf, out);

EEXIT(0);

} else

EEXIT(-1);

}

Server:

• Receives encrypted requests

• Processes them in enclave

• Sends encrypted responses

18

CPU-level Access Control

MEE

CPU

MMU

enclave mode? semantic check? Plaintext

Page Miss Handler

int process_request(char *in, char *out)

{

copy_msg(in, input_buf);

if(verify_MAC(input_buf))

{

decrypt_msg(input_buf);

process_msg(input_buf, output_buf);

EEXIT(0);

} else

EEXIT(-1);

}

Address check?

19

Isolated Execution Summary

User process

Application

code

Application

data

OS

Enclave

Enclave

code

Enclave

data

Threads

…

Trusted execution environment (TEE)

in process

• Own code & data

• Controlled entry points (Access

control)

• Provides confidentiality & integrity

• Supports multiple threads

• Full access to application memory

Attestation

21

CPU

OS

APP

Remote Attestation

app

runs on a real hardware

in an up-to-date TEE ?

Is code really running inside an SGX enclave?

22

CPU

OS

APP

Local Attestation

appapp

Local attestation

Prove enclave’s identity (= measurement)

to another enclave on same CPU

Attestation is a mechanism to verify

that the application runs on a real

hardware in an up-to-date TEE with

the expected initial state.

23

TEE Measurement

• Enclave contents distributed in plaintext

• Must not contain any (plaintext) confidential data

• Secrets provisioned after enclave constructed and integrity verified

• Problem: what if someone tampers with enclave?

• Contents initially in untrusted memory

int process_request(char *in, char *out)

{

copy_msg(in, input_buf);

if(verify_MAC(input_buf))

{

decrypt_msg(input_buf);

process_msg(input_buf, output_buf);

encrypt_msg(output_buf);

copy_msg(output_buf, out);

EEXIT(0);

} else

EEXIT(-1);

}

int process_request(char *in, char *out)

{

copy_msg(in, input_buf);

if(verify_MAC(input_buf))

{

decrypt_msg(input_buf);

process_msg(input_buf, output_buf);

copy_msg(output_buf, external_buf);

encrypt_msg(output_buf);

copy_msg(output_buf, out);

EEXIT(0);

} else

EEXIT(-1);

}

24

TEE Measurement

EPC

DRAM CPU

c0 94 7d bc 35 52 ba

9a 16 a6 63 0b 72 09

0d 0f 15 0b d0 2d ae

1a 55 f9 2f a8 20 98

• CPU calculates enclave measurement hash

during enclave construction

• Each new page extends hash with page

content and attributes

(read/write/execute)

• Hash computed with SHA-256

• Measurement can be used

to attest enclave to local or

remote entity

CPU calculates enclave measurement hash during enclave construction

Different measurement if enclave modified

25

Local Attestation

• Prove identity of A to local enclave B

Enclave A Enclave B

1. Hi! I’m 5f904ba8910bff! Who are you?

0d 0f 15 0b d0 2d ae

Measurement (enclave A)

5f 90 4b a8 91 0b ff

Measurement (enclave B)
2. Please create a report for

5f904ba8910bff

0d 0f 15 0b d0 2d ae

3. Here you go!

4. Here is my report

0d 0f 15 0b d0 2d ae

5. Please give me my report

verification key

6. Here you go!

1. Target enclave B measurement required for key generation

2. Report contains information about target enclave B, including its measurement

3. CPU fills in report and creates MAC using report key, which depends on random CPU fuses and target enclave

B measurement

4. Report sent back to target enclave B

5. Verify report by CPU to check that generated on same platform, i.e. MAC created with same report key

(available only on same CPU)

6. Check MAC received with report and do not trust A upon mismatch

26

Remote Attestation Overview

Enclave

Intel CPU

Intel attestation service

Host

Enclave

Intel CPU

Host

Ensure the

authenticity of

the device

Verify the authenticity of

the enclave

27

Report and Quote

char input_buf[BUFFER_SIZE];

char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)

{

copy_msg(in, input_buf);

if(verify_MAC(input_buf))

{

decrypt_msg(input_buf);

process_msg(input_buf, output_buf);

encrypt_msg(output_buf);

copy_msg(output_buf, out);

EEXIT(0);

} else

EEXIT(-1);

}

Report

REPORTDATA

(output)

Measurement

Quote

REPORTDAT

A

(output)

Measurement

Signature

28

PE and QE

• Transform local report to remotely

verifiable “quote”

• Based on provisioning enclave (PE) and

quoting enclave (QE)

• Architectural enclaves provided by

Intel

• Execute locally on user platform

• Each SGX-enabled CPU has unique key

fused during manufacturing

• Intel maintains database of keys

29

Root Provisioning Key

• The first fused key created by Intel at

manufacturing time, is the Root

Provisioning Key (RPK)

• Intel is also responsible for maintaining a

database of all keys ever produced

30

Remote Attestation

• PE communicates with Intel attestation service

• Proves it has key installed by Intel

• Receives asymmetric attestation key

• QE performs local attestation for enclave

• QE verifies report and signs it using

attestation key

• Creates quote that can be verified outside

platform

• Quote and signature sent to remote attester, which

communicates with Intel attestation service to

verify quote validity

Arm Trust Zone

• TrustZone is a set of hardware

security extensions in Arm

processors.

• Introduced in application

processors (Cortex-A) in 2004

• Introduced in microcontrollers

(Cortex-M) in 2016

• Focusing on the extensions in

Cortex-A, due to its:

• widely deployment,

• available documents,

• growing interest from

academia.

31

32

Privacy Concerns on Attestation

Attestation using standard asymmetric signing schemes has drawn some privacy

concerns

Quote 1

I know you, and now I can identify/trace you !

33

Intel Enhanced Privacy ID (EPID)

Attestation using standard asymmetric signing schemes has drawn some privacy concerns

• EPID is a type of group signature scheme

that allows a platform to sign objects

without uniquely identifying the platform

or linking different signatures.

• Each EPID signer belongs to a “group”,

and verifiers use the group’s public key to

verify signatures.

• A typical size for a fully populated group is

a million to a few million platforms.

Quote 1 Quote 2

34

EPID scheme Join protocol

• EPID is a type of group signature scheme

that allows a platform to sign objects

without uniquely identifying the platform

or linking different signatures.

• A typical size for a fully populated group

is a million to a few million platforms.

Sanders, Olivier, and Jacques Traoré. "EPID with Malicious Revocation." In Cryptographers’ Track at

the RSA Conference, pp. 177-200. Springer, Cham, 2021.

35

Use Case 1: Authenticated Key Agreement

1. The verifier starts executing the key exchange

protocol and sends the first message g^A to the

software inside the secure container.

2. The software inside the container produces the

second key exchange message, g^B, and asks the

trusted hardware to attest the cryptographic

hash of both key exchange messages,

h(g^A||g^B).

3. The verifier receives the second key exchange

and attestation signature, and authenticates the

software inside the secure container by checking

all the signatures

Sealing

37

Encrypted Storage

MemoryCPU Storage

Extension

Encrypted

Memory

Encrypted

Storage

38

MRENCLAVE

Enclave A

EPC

Encrypted

Code/data

Memory

Enclave B

Encrypted

Storage

MRENCLAVE: Its

measurement is the strictest

way to identify an enclave.

39

MRSIGNER

Enclave A

EPC

Encrypted

Code/data

Memory

Enclave B

Encrypted

Storage

• MRSIGNER : The certificate is

signed by the “independent software

vendor” (ISV)

• Allows data migration from old

security versions to new ones

40

Root Provisioning Key

• each platform should assume that its RSK

value is both unique and known only to

itself.

41

Simplified EGETKEY derivation process

MRENCLAVE and MRSIGNER

Summary

43

What an Enclave Can Do?

• Computations

• Access its own [encrypted] memory

• Access app memory

• Communicate with user, but insecurely

• Communicate with another party, which can be

secure if the enclave shares a key with the other

party

• Attest its identity (a hash of its binary and initial

data) to another party

• “Seal” data, i.e. encrypt data with a key that only it

can access, for persistent storage – Can use

Platform Service Enclave (PSE) for trusted time

and monotonic counter

• Teardown

44

SGX Limitations & Research Challenges

• Amount of memory enclave can use needs to be known in advance

• Dynamic memory support in SGX v2

• Security guarantees not perfect

• Vulnerabilities within enclave can still be exploited

• Side-channel attacks possible

• Performance overhead

• Enclave entry/exit costly

• Paging very expensive

• Application partitioning? Legacy code? …

45

• Intro to Intel SGX , Mark D. Ryan
• Attacks and Defenses for Intel SGX, Taesoo Kim
• Intel SGX Explained, Victor Costan and Srinivas Devadas
• Privacy-Preserving Analytics in and out of the Clouds, Jon Crowcroft

Reference

