
Accountable Decryption made Formal
and Practical

Rujia Li, Yuanzhao Li, Qin Wang, Sisi Duan, Qi Wang, Mark Ryan

Tsinghua University, China
University of New South Wales, Australia
University of Birmingham, United Kingdom
Southern University of Science and Technology, China

November 15, 2023



Preventive Strategies

Modern cryptographic systems rely on preventive strategies:
• Passwords, access control
• Access control
• Authentication protocols

However, as computer systems become more complex and larger in
scale, preventive strategies alone are not enough.



Data Use Rights

The data owner has data use rights. Others do not have data use rights ???



The Needs for Accountability

In certain break-glass scenarios, users might need to
bypass these strategies to access important information.
This is where accountability plays a vital role:

• Complements preventive strategies.
• Identifies and penalizes misuse after data access.
• Ensures responsible use of sensitive data.



Make Decryption Accountable

• Detection of unauthorized access
allowing the encryptor to audit the decryption process

• Deterrents of illegal behavior
any violation of the access control to data can be caught and punished

• Regulatory compliance
verifiable record on decryption is provided for checking its compliance with the
pre-defined policies

• Key leakage awareness
users will be alerted of a potential leakage of keys (ciphertexts decrypted without
permission)



Contents

▶ Definition
▶ Scheme
▶ Implementation
▶ Evaluation
▶ Applications



Accountability Definition

Definition (1996, On linkage)

An accountable system associates states and actions
with identities and provides primitives for actors to
validate the states and actions of their peers, such that
cheating or misbehavior becomes detectable, provable,
and undeniable by the perpetrator1.

Definition (2000, On detection)
Accountability has the following features: (a) reliable
evidence: It indicates the delivery to a principal of
evidence that is later presented to the judge. The
evidence can be validated and achieves fairness (i.e.,
that one protocol participant gets evidence if and only if
the other one does) and non-repudiation; (b) enhanced
misconduct detection: A system should provide a means
to directly detect and expose misbehavior by its
participants, or, enable a principal to prove to the judge
any detected fraud2.

1Kailar, Rajashekar. "Accountability in electronic commerce protocols." IEEE Transactions on Software
Engineering 22, no. 5 (1996): 313-328.

2Buldas, Ahto, Helger Lipmaa, and Berry Schoenmakers. "Optimally efficient accountable time-stamping."
International workshop on public key cryptography, pp. 293-305. Springer Berlin Heidelberg, 2000.



Accountability Definition

Definition (2005, On punishment)

Accountability in a computing system implies the
following properties: (a) awareness of policy violation:
Some actors have the right to hold other actors to a set
of standards and judge whether they have fulfilled their
responsibilities in light of these standards. (b) posterior
penalty: An entity is accountable with respect to some
policy (or accountable for obeying the policy).
Whenever the entity violates the policy, with some
non-negligible probability, the entity will be punished3.

Definition (2010, detection and punishment)

A system is accountable if (a) faults can be reliably
detected, (b) each fault can be undeniably linked to at
least one faulty node, and (c) the faulty entities will be
properly sanctioned4.

3Feigenbaum, Joan, Aaron D. Jaggard, and Rebecca N. Wright. "Towards a formal model of accountability." In
Proceedings of the 2011 New Security Paradigms Workshop, pp. 45-56. 2011.

4Haeberlen, Andreas. "A case for the accountable cloud." ACM SIGOPS Operating Systems Review 44, no. 2
(2010): 52-57.



General Principles of Accountability

Identities Actions Detection Punish-
ment Identities

• Linkage identities: Actions linked to entities performing them.
• Reliable evidence: Records of actions preventing secret omissions or falsifications.
• Policy compliance: Evidence inspection for faults.
• Detection: Fault alerts verifiable by third parties.
• Punishment: Sanctions for misconduct.



Our Definition of Accountable Decryption

Our approach to accountable decryption focuses on responsibility and fairness:

• Trace, identify, and punish malicious decryptors.

• Feedback and penalties based on evidence.



Entities and Syntax

Accountable decryption involves multiple entities:

• Encryptor (E): Creates ciphertexts and policies.

• Decryptor (D): Performs decryption, generating plaintext and evidence.

• Judge (J): Detects misbehavior and imposes penalties.

The key operations include:

• Encryption: E generates ciphertext and policies.

• Decryption: D decrypts under specific conditions, producing evidence.

• Check: J ensures actions comply with policies.

• Reaction: J penalizes non-compliant actions.



Entities and Syntax

• Encryption. (ct,P)← Enc(m) : An encryptor E executes this algorithm to generate a
ciphertext ct, and policies P. Here, P dictates what are legal actions.

• Decryption. (m,π)
ẽ←− Dec(key, ct): A decryptor D executes this algorithm under

designated environment denoted as ẽ. ẽ captures critical aspects of the event, encompassing
precise timing, unfolding sequence, and the identities of the participating entities. Ideally, π
faithfully reports ẽ.

• Check. tag ← Check(π, ct,P): A judge J executes this algorithm to scrutinize the actions of
the decryptor, ensuring compliance with the predefined policies. Here, true indicates the
decryptor’s action is aligned with policies.

• Reaction. ⊥ ← React(tag,P): A judge J imposes penalties against the decryptor in case of
non-compliance.



Definition 1: Accountability of Decryption

Definition (Accountability of decryption, ADec)

A system achieves ADec if the following conditions hold:

(i) non-repudiation: for any execution of Dec(key, ct) on ẽ ⊀ P,
there exists a negligible function negl that makes Check(π,P)
output true, namely, Pr[true = Check(π,P)] ≤ negl(λ).

(ii) non-frameability: for any execution of Dec(key, ct) on ẽ ≺ P,
there exists a negligible function negl that makes Check(π,P)
output false, namely, Pr[false = Check(π,P)] ≤ negl(λ).

This ensures that malicious decryptors are identified
and penalized, while honest ones are safeguarded.



Definition 2: Accountability with Trustworthy Trustee

Definition (Accountability of decryption with trustworthy trustee, ADec-TS)

The system achieves ADec-TS if the following conditions hold:

(i-ii) the same as those in Definition 2.

(iii) key-privacy: for any execution of Dec(key, ct), the probability for TS to leak the key is negligible.

(iv) evidence-authenticity: for any execution of Dec(key, ct) with ẽ, the probability for TS to output a forged π′

is negligible, where π ̸= π′, and Check(π, ct,P) = Check(π′, ct,P).

(v) evidence-completeness: for any execution of Dec(key, ct), the probability for TS to fail to output evidence
is negligible, namely Pr[m,⊥ = Dec(key, ct)] ≤ negl(λ), where ⊥ signifies the absence of evidence being
produced.

This definition adds layers of security and trust, ensuring the trustee’s role enhances
accountability.



Definition 3: Accountability with Untrusted Trustee

Definition (Accountability of decryption with untrusted trustee, ADec-uTS)

The system achieves ADec-uTS if the following conditions hold:

(i) non-repudiation: for any execution of Dec(key, ct) on ẽ ⊀ P, there exists a negligible function negl that
makes Check(π,P) output true, namely, Pr[true = Check(π,P)] ≤ negl(λ).

(ii) non-frameability: for any execution of Dec(key, ct) on ẽ ≺ P, there exists a negligible function negl that
makes Check(π,P) output false, namely, Pr[false = Check(π,P)] ≤ negl(λ).

(vi) leakage-resistance: Even if TS is compromised, the probability for TS to obtain D’s private key is negligible.

(vii) compromise-awareness : If TS fails to meet Condition-(iv) or Condition-(v) as specified in Definition 6, it
exposes itself to the risk of detection. Alternatively, when TS misbehaved, the probability of the victim
user’s (i.e., encryptor) being unaware of TS’s misbehavior is negligible.

This definition ensures the system’s security and integrity, even in the worst-case scenario of a
compromised trustee.



Contents

▶ Definition
▶ Scheme
▶ Implementation
▶ Evaluation
▶ Applications



Trusted Execution Environment

TEE is a secure area within the main processor that operates as an isolated kernel, ensuring
the confidentiality and integrity of sensitive data and computations5.

• Isolated execution:
Protected execution zone

• Ability to convince verifiers:
(Remote/Local) Attestation

• Protected storage:
Sealing

5Li, Rujia, Qin Wang, Qi Wang, David Galindo, and Mark Ryan. "SoK: TEE-Assisted Confidential Smart
Contract." Proceedings on Privacy Enhancing Technologies 3 (2022): 711-731.



Naive Solution

• Running a key manager (e.g., identity-based
encryption scheme6) inside TEE

• Forcing TEE to generate a piece of evidence
for each key request

6Boneh, Dan, and Matt Franklin. "Identity-based encryption from the Weil pairing." In Annual international
cryptology conference, pp. 213-229. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.



Workflow

• An encryptor encrypts a message and sends a
ciphertext ct and P to a decryptor.

• A decryptor submits a decryption request to
TEE-based TS with a signature to prove the
identity.

• TEE retrieves the decryption key while generating
evidence about the key request.

• The decryptor accesses the secret by decrypting ct.
• J checks the evidence and imposes penalties

against malicious decryptors.



Technical Challenges

• Challenge I: How to protect the decryption keys under compromised TEEs?
• Challenge II: How to detect the compromised TEE?



Mitigating Challenge I: Protect

Key-splitting mechanism
• Using a commitment scheme to hide a

random number
(used to generate the full key).

• TEE only stores a partial key while the
user holds another partial one.

• Even if an attacker accesses the key
inside TEEs, it cannot obtain a full
decryption key.



Mitigating Challenge II: Detect

For identifying potential compromises of TS, we
introduce two sub-algorithms:

• Deterministic detection algorithm
infers a compromised state through a
challenge-response mechanism.

• Probabilistic detection algorithm
identifies potential compromises by
comparing the final keys issued by D with
those issued by TS.



Mitigating Challenge II: Detect

Deterministic detection algorithm
• TS forged π

• TS forged pkey

• TS suppressed π

• TS suppressed pkey

Probabilistic detection algorithm
• TS hides the new key and evidence



Final Scheme

• E encrypts a message and sends the corresponding
ciphertext ct and P to D.

• for decrypting ct, D must send a key request with
a commitment for his random number to TS.

• TS generates decryption keys and updates the
evidence π of key extraction.

• J traces log to find the misbehavior of decryption
and imposes penalties against the decryptor.

• The inspectors (i.e., E, D, J) identify and prove the
guilty of dishonest/compromised TEE who
suppressed the evidence/key and provided the
forged evidence/key.



Detailed Protocol

• Partial key
created by users

• Partial key
generated inside TEE

• Evidence
generated inside TEE



Contents

▶ Definition
▶ Scheme
▶ Implementation
▶ Evaluation
▶ Applications



Implementation

• Intel SGX SDK (v2.14):
Developing SGX applications

• GMP (v6.2.1):
The GNU Multiple Precision

• PBC (v0.5.14):
Pairing-Based Cryptography

• Merklecpp (v1.0.0):
A simple Merkle tree library

• OpenSSL (v1.1.1u):
Cryptography and SSL/TLS Toolkit

• OpenSSL (v2.14):
Intel Software Guard Extensions SSL

• Drogon (v1.8.3):
HTTP application framework



Demonstration

Weblink

http://a-decrypt.com/

QR code

http://a-decrypt.com/


Contents

▶ Definition
▶ Scheme
▶ Implementation
▶ Evaluation
▶ Applications



Performance and Scalability Evaluation

We assess the performance of Portex focusing on two aspects:

• Decryption performance:
misbehavior-checking & compromised TEE detection.

• Scalability:
performance with an increasing number of decryptors.

Experimental setup:

• Hardware: 3.5GHz Intel Xeon CPU (Ice Lake).

• Security parameter: λ = 512.

• Pairing: Symmetric bilinear pairing on curve y2 = x3 + x.

• Methodology: Averaging over 1,000 repetitions.



Evaluation Results

Performance with Static Parameters:

• Scenario: 1000 decryptors, each performing one decryption.

• Decryption time: Full process within 10ms.

⋄ Key request : 1.31ms, 3.15ms, 2.56ms for sub-algorithms.
⋄ Evidence generation and verification: 1.69ms and 6.05ms.
⋄ Ciphertext decryption: Less than 1ms (Dec.Setup: 0.1ms, IBE.Dec: 0.6ms).

• Tracing malicious decryption: Max 0.002ms.

• Detecting forgeries: 0.02ms for evidence, 0.01ms for keys.



Evaluation Results

Results



Contents

▶ Definition
▶ Scheme
▶ Implementation
▶ Evaluation
▶ Applications



Applications

Accountable warrant execution: Making law enforcement officers
accountable for accessing sensitive information.

Accountable ePHI: Helping electronically protected health information
to find unauthorized access and potential breaches.

Accountable location access: Any access to the recipient’s info is
auditable, ensuring accountability and preventing misuse.



Access Control, Traceability, and Accountability

Access control Governing who can access spe-
cific resources, defining user per-
missions, privileges, and restric-
tions.

A nurse may access patient records
in her department but not in other
departments.

Traceability Providing a documented trail of
how the data has been created,
modified, accessed, or trans-
ferred.

A nurse accesses a patient’s record in
her department. The system records
the nurse’s name, time of access, and
the reason for access.

Accountability Checking the documented trail
to make users accountable for
any misuse or violations.

A nurse has improperly accessed a
patient’s records. Accountability re-
quires she to provide valid reasons;
otherwise, she will be sued.



Conclusion

• Novel definitions: Introduction of a new set of definitions specifically tailored for
accountable decryption, aiming to encompass all potential scenarios and limitations.

• Scheme construction: Development of a scheme that aligns with these definitions,
utilizing trusted hardware to ensure reliability and security.

• Prototype and evaluation: Implementation of a prototype demonstrating the
practicability and efficiency of our approach, backed by thorough evaluations.



Thanks


	Definition
	Scheme
	Implementation
	Evaluation
	Applications

